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Abstract
The use of high-strength steel has been increasing in the steel construction industry due to its high 
strength-to-weight ratio. Currently, high-strength steel columns are designed by equations that 
were developed for normal-strength steel, which has shown to result in conservative predictions 
for high-strength steel columns. Moreover, the current version of AISC 360 is limited to hollow 
structural sections (HSS) with steel grades up to 485 MPa. This study establishes a data-driven 
design approach for HSS columns that addresses a range of steel grades up to 960 MPa, residual 
stresses, geometric imperfections, and geometry including member and element slenderness. An 
extensive database for square and rectangular HSS columns is constructed from the existing liter- 
ature containing both experimental and numerical research. Conventional interpolation and newer 
machine learning methods were adopted to examine the buckling strength estimation. The predic- 
tions derived from the proposed data-driven model were compared with the capacities estimated by 
AISC 360 to examine the accuracy of current design rules for HSS columns. The data was divided 
into groups to study the effect of factors on the design prediction accuracy, including (1) normal- 
vs. high-strength grades and (2) hot-rolled vs. cold-formed sections. In addition, the database and 
all analysis methods are coded in a user-friendly computational notebook format for ease of use 
and saved in the open-source repository so future researchers and users can update and modify the
analysis as future data is generated.

1. Introduction
The advances in computational capabilities have enabled access to comprehensive data that in- 
cludes a large number of observations and parameters. Structural engineers can exploit data to 
make use of large amounts of data acquired through physical experiments and advanced technical 
computing systems. To efficiently perform operations for tasks using the data, it is necessary to 
design a data structure, which is a storage that is used to store and organize data. The data structure 
is a way of arranging data on a computer so that it can be accessed and updated efficiently by users. 
However, the industry has looked for help from specialists to handle a vast amount of field data
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for data review and mapping data, which can be time- and resource-consuming. Moreover, struc-
tural engineering has not taken full advantage of advancements in data analytics compared with
other civil engineering subdisciplines (El-Dakhakhni 2021). Introducing programming language
written analysis methods and data structures for structural design can advance data analytics in the
structural engineering community.

Data-driven design approaches such as interpolation and regression have broad applications for
predictive analysis using the data. However, interpolation and regression are theoretically derived
from univariate prediction, therefore they become challenging when large data is applied while
maintaining tractable computational complexity (Lux et al. 2021). Recently, machine learning
(ML) techniques have shown significant advantages in estimating underlying complex relation-
ships of parameters and could help the structural design industry benefit from the vast quantities of
available data. ML has been implemented to predict responses of steel structural components (Pala
2006; Pu and Mesbahi 2006; Sheidaii and Bahraminejad 2012; Kumar and Yadav 2013; Abambres
et al. 2018; Xu et al. 2021; Fang et al. 2021; Dai et al. 2022), which have demonstrated the
ability to improve the regression accuracy of capacity prediction of steel components. However,
most of the studies listed above considered either only experimental or numerical results to predict
the structural responses while both physical testing and numerical results can be used for structural
analysis and design per multiple steel design codes (AISC 360 2016; Eurocode 3 2014; AS 4100
1998; AS/NZS 4600 2018; CSA S16 2019).

To introduce a data structure for structural design and data-driven models using a database that
includes both experimental and numerical data, this study explores the buckling capacity of square
and rectangular hollow section (SHS and RHS) columns. Hollow sections are widely used as
structural elements in buildings and other structures due to their structural efficiency coming from
a high strength-to-weight ratio, therefore a large data from the literature is available. The predomi-
nant manufacturing processes of SHS and RHS members are hot-rolling, cold-forming, or welding
four steel plates into a box shape.

Design rules for SHS and RHS members in compression are codified in the US specification
for structural steel buildings AISC 360 (2016). Experimental and numerical results for various
cross-section types and sizes with geometric imperfections were incorporated to build the buck-
ling curves given in the codified provisions. AISC 360 (2016) has a single buckling curve based
on the numerical results of columns with an initial out-of-straightness, which were studied by Tide
(1985), Bjorhovde (1988), and Galambos (1998). Although the codified provisions have been
broadly used in the structural steel industry, the accuracy and efficiency of the design rules can
be improved by addressing several challenges; (1) Although high-strength steel grades have been
available due to the advancement of steel manufacturing technology in recent years, the design
rules for them are a simple extension of those for normal-strength steels and do not directly ad-
dress the influence of material yield strength. AISC 360 (2016) has limited provisions for hollow
sections with steel grades greater than 485 MPa. A predictive model that addresses a wide spec-
trum of steel grades could address this issue. (2) Formation methods are not incorporated into
the design rules and cold-formed hollow sections follow the design rules for hot-rolled hollow sec-
tions. The test capacity of high-strength steel columns (Sedlacek et al. 1999; Ma et al. 2016; Wang
and Gardner 2017; Meng and Gardner 2020) predicted by the existing design rules were shown to
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be overly conservative, which may generate an inefficient and thus costly design. Moreover, it was 
reported that the AISC method even provided unconservative predictions compared with the actual 
results for cold-formed steel hollow section columns (Meng and Gardner 2020; Ma et al. 2016;
Guiaux 1972; Bjorhovde 1977; Braham et al. 1980; Key et al. 1988; Sedlacek et al. 1996; So- 
modi and K övesdi 2017). Therefore, the current design provisions are unable to accurately predict 
the actual capacity of SHS and RHS columns, particularly for high-strength steel and cold-formed 
steel members. These under- and over-predictions resulting from the existing design provisions 
indicate the necessity of an accurate prediction model for the buckling capacity of high-strength 
steel RHS and SHS columns fabricated by different methods.

This study focuses on data analytics in structural engineering and how it helps with incorporating 
new materials and forming processes into structural steel design. The objectives of this study are:
(1) Provide a data structure that includes both experimental and computational data. To this end, 
the SHS and RHS column buckling capacity was explored in this study. The database includes a 
wide range of steel grades and geometric properties and both cold-formed and hot-rolled forming 
processes. Therefore, prediction models based on the database can address the limitations of the 
current design rules for hollow section columns and additionally provide a way for updating future 
design specifications. (2) Develop data-driven models using conventional interpolation and newer 
machine learning algorithms. To that end, a multi-variate linear interpolation model is developed 
first to examine if enhanced data-driven techniques need to be deployed. (3) Discuss the existing 
design rules for SHS and RHS capacity estimation. Since the database covers a range of material 
and geometric properties and formation processes, comparisons between the predictions by the 
proposed ML models and the current design rules can provide recommendations to improve the
design provisions.

2. Design rules for RHS and SHS columns - ANSI/AISC 360-16
Chapter E of the US specification ANSI/AISC 360-16 (2016) provides the design criteria for mem- 
bers under compression. When an SHS and RHS section has a nonslender element that has the 
width-to-thickness ratio, b/t, of equal or less than 1.4

√
E/Fy, where b is width of flat regions and

t is thickness (Fig. 1), Eq. 1 is used to derive the design buckling resistance Nu,AISC of the section, 
where Fy is yield strength of material and E is Young’s modulus. Cross sections with slender 
elements, which have b/t greater than 1.4

√
E/Fy, should use Eq. 2 which considers an effective 

cross-sectional area to estimate the buckling resistance:

Nu,AISC = ϕcχAISCFyAg (1)for SHS and RHS with nonslender elements

Nu,AISC = ϕcχAISCFyAe (2)for SHS and RHS with slender elements

where ϕc is the resistance factor for compression, equal to 0.9 in AISC 360 2016; Ag is the gross
cross-sectional area; Ae is the effective cross-sectional area; χAISC is the AISC column buckling
reduction factor, which can be calculated by either Eq. 3 or Eq. 4 depending on the member slen-
derness ratio Lc/r or relative slenderness ratio λc = (Lc/πr)

√
Fy/E, in which Lc is the effective

member length determined by KL = Lc, where K is the effective length factor and L is member
length, and r is radius of gyration of a cross section:
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Figure 1: Cross section geometry for SHS and RHS
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(or λc > 1.5) (4)

where Fe is elastic buckling stress, which can be calculated by (π2E)/(Lc/r)
2.

AISC 360 (2016) developed the buckling curve based on columns with an initial out-of-straightness 
of Lc/1500 (Tide 1985; Bjorhovde 1988; Galambos 1998). The buckling curve for hollow sections 
is applicable to all forming processes and is limited to steel grades up to a yield stress of 485 MPa
(70 ksi), however, AISC 360-16 does allow the general use of steel up to 690 MPa (100 ksi) yield
stress.

3. Data-driven approaches
As samples in the database are sparsely- and unevenly-scattered, linear multivariate interpolation 
was implemented to predict the hollow section column buckling capacity for the unsampled loca- 
tions. In addition, a machine learning algorithm, Multi-layer Perceptron (MLP), was implemented, 
which has shown success in similar regression tasks for predicting the strength of steel and rein- 
forced concrete structural members and systems (Kim et al. 2021; Kiani et al. 2019; Rahman et 
al. 2021; Degtyarev 2021). The open-source library scikit − learn (2011) in Python 3 was used
to implement the algorithms.

3.1 Linear multivariate interpolation
Linear interpolation is a simple mathematical method, involving the generation of new values 
based on an existing set of values. This method is achieved by rendering linear polynomials to
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Figure 2: Graphical illustration of multilayer perceptron

construct new data points within the range of a discrete set of known data points. In this study, 
piecewise-linear interpolation was adopted, which finds interpolated values from meshes created 
through triangulation of scattered data. This model generates triangles by drawing lines between 
irregularly gridded data points. Triangle edges are not intersected by each other. The interpolator 
seems like a patchwork of triangular faces over the extent of the grid. Triangulation with linear
interpolation works best when data are evenly distributed over the grid area (Yang et al. 2004).

3.2 Multi-layer perceptron
A multi-layer perceptron (MLP) consists of interconnected neurons transferring information to 
each other, which is much like the human brain and nerve system, to implement function approxi- 
mations. The network can be divided into three main layers including an input layer, hidden layers, 
and an output layer as illustrated in Fig. 2. The input layer is an initial layer of a network that in- 
corporates input variables that will be used to generate an output. The network requires at least one 
hidden layer which performs computations and operations on the previous layer through a function 
involving the weights and values in a mathematical form. The weights assigned to the connections
between the layers specify the importance of neurons.

4. Database
Data-driven models undergo a training procedure to recognize the patterns in data. Therefore, 
using reliable training data is crucial for developing an accurate data-driven model. This study 
established a database of steel SHS and RHS members under compression from the literature 
including journal papers and technical reports. A total of 695 experimental results (Meng and 
Gardner 2020; Sedlacek et al. 1999; Ma et al. 2016; Guiaux 1972; Bjorhovde 1977; Braham et al. 
1980; Key et al. 1988; Somodi and K övesdi 2017; Rondal 1984; Barber and Birkemoe 1978; Sully 
and Hancock 1996; Pavlovvcivc et al. 2012; SSAB 2014) and 3,974 FE results (Meng and Gardner 
2020) were assembled. Meng and Gardner (2020) developed shell FE models to simulate the 
buckling test results on hot-rolled and cold-formed steel SHS and RHS columns. Geometrical and 
material nonlinear analyses with imperfections (GMNIA) were performed in Abaqus (2015). The 
FE models were validated against the column test results and then utilized in parametric studies 
with a range of steel grades and geometries to expand the data pool for SHS and RHS column 
buckling. The detailed FE model description is provided in Meng and Gardner (2020).
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Seven input variables that are known to govern the buckling behavior of SHS and RHS mem-
bers under axial compression were considered, including five geometric parameters, one material
property, and formation process. The geometric parameters include four cross-section dimensional
properties, such as the overall width B, overall height H , outer corner radius ro, and thickness t
(Fig. 1), and the effective length Lc. Parameters required to calculate the column buckling capacity,
such as radius of gyration r, cross-sectional area A, and moment of inertia I were not considered in
this section since they can be derived indirectly based on the four cross-section dimensional param-
eters. For stub columns that are fixed at both ends, the effective length factor K was taken as 0.5.
Yield strength Fy is considered a material property. The yield stress of cold-formed steel involves
corner strength enhancements that emerge as a result of cold work during production, and appear
in cold-formed steel tube sections (Cruise and Gardner 2008; Afshan et al. 2013). This study used
the weighted average yield stress given in Eq. 5 to estimate the yield stress of cold-formed steel
members incorporating the corner strength enhancements:

Fy = CFyc + (1− C)Fyt (5)

where Fyc is the yield stress of the corner region, Fyf is the yield stress of the flat region, and C
is the ratio of total corner cross-sectional area to total cross-sectional area of the full section for
compression members. Lastly, the forming process was taken into account as an input parameter
to develop a consistent prediction model regardless of the manufacturing techniques.

Fig. 3 provides the distribution of the input and output variables grouped by the data source, which
are the experimental and FE data, respectively. The histograms include statistical information
such as the minimum and maximum values, mean, and coefficient of variation (CV). Histograms
with a large CV enable data-driven models to fit a wide range of variables and hence a larger
CV is desirable. Comparing the distributions for the experimental and FE data, it can be seen
that overall the FE data has a larger density than the experimental data due to its comparatively
larger sample size. For some variables that have a significant effect on the buckling capacity as
previously discussed in Section 2., the FE data supplements sparse regions of the experimental
data. For example, the experimental results focus on yield strength of less than 600 MPa, while
the FE data augments the limited samples for high-strength steel columns. Moreover, concerning
outer corner radius ro, thickness t, and the member effective length Lc, the FE data considers larger
CVs and adds samples to the database where the experimental data is limited. Distributions for the
input features H and B in the FE data are discrete because the FE simulations employed only two
values for H and B. Young’s modulus E of steel was excluded from the input parameter set due
to its minimal variation, which is consistent with the literature (Bartlett et al. 2003; Ellingwood et
al. 1982).

Correlation relationships between the input variables and the output variable (Nu) were explored.
The correlation coefficient ρ provided in Eq. 6 was utilized to measure a linear correlation:

ρX1,X2 =
Cov(X1, X2)

σX1σX2

(6)

where Cov is the covariance, σX1 and σX2 is the standard deviation of input variables X1 and X2,
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Figure 3: Statistical distributions of the input and output variables
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Figure 4: Correlation matrix of the input parameters (a) experimental data (b) FE data (c) combined data

respectively. The coefficient ρ has a range from -1 as the perfect negative correlation to 1 as the 
perfect positive correlation. When a pair of features have a coefficient close to 1 or -1, the features 
have a strong relationship. A coefficient of 0 indicates that the two variables are uncorrelated.

Fig. 4 shows the correlation matrix of the variables. The matrix for the experimental data (Fig. 4a)
indicates that the response variable Nu is highly correlated only with cross-section thickness with 
a coefficient value of ρ = 0.67. The other input parameters have correlation coefficients lower than 
0.5 with the output variable. The buckling capacity Nu in the FE data (Fig. 4b) shows a strong 
relationship with ro and t with the same coefficient value of ρ = 0.61. It should be noted that those 
two input features are perfectly correlated with each other according to the FE simulation setup
(Meng and Gardner 2020).

The combined data (Fig. 4c) more closely resembles the correlation coefficients for the FE data 
than the experimental data, which reflects the relatively larger size of the FE data set. For example, 
the high correlation of B and Nu in the experimental data reduced in the combined data due to the 
low correlation in the FE data. Comparing the correlation matrices of the experimental and FE data, 
only the correlation between H and B shows an opposite relationship between the experimental 
and FE data, which are negative and positive correlations, respectively. As shown in Fig. 3, the FE 
data included only two different values of B and thus has a small CV and high density, whereas 
the experimental data has a wider range of the parameter. This large variation in the experimental
data led to the combined data having a positive correlation between B and H .

5. Model development
The models were trained on a range of nine data set sizes, from 10% to 90% of the total data, and 
tested on the remaining data. The data was randomly split into training and test sets. Identical 
training and testing sets were used for the interpolation and ML algorithms for consistency. A 
multivariate interpolation model was created in the form of Nu = f(H, B, ro, t, Lc, Fy, Forming),
where the seven input variables were used to approximate the buckling capacity, Nu.

The parameters required by MLP, which is a subset of neural networks and a machine learning
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model used in this study, were determined by hyperparameter tuning based on a grid search al- 
gorithm with 10-fold cross-validation, which is a technique to search through the best parameter 
values from a given set of the grid of parameters. It runs through all the different parameters that 
are fed into the parameter grid and produces the best combination of parameters, based on a scoring 
metric such as a coefficient of determination. The algorithm evaluates the model performance for 
each combination to obtain the optimal combination of values from this set. The cross-validation 
process was performed to reduce errors arising from a random sampling of a training set. During 
cross-validation, the training set was split into k subsets (folds) and then k − 1 subsets were used
for model fitting and the remaining subset was used for model validation. A test set was held 
out for a final evaluation. The model performance from k-fold cross-validation takes an averaged 
accuracy over k folds, and this study divided the training set into ten folds.

The hyperparameters for the MLP algorithm are as follows: the size of hidden layers was set to
(100, 150, 50) in which the first, second, and third hidden layers have 100, 150, and 50 units, 
respectively; the activation function for the hidden layer was set to the rectified linear activation 
function ‘ReLU’; the solver for weight optimization was set to ‘lbfgs’ which uses a limited amount 
of computer memory; the regularization parameter alpha was set to 0.00005; and the learning rate 
was set to ‘constant’ which adopts a constant learning rate with a step size of 0.001; the maximum 
number of iterations was set to 1000.

This paper has enabled the analysis models and database to be publicly available on GitHub (https: 
//github.com/HyeyoungKoh/Data-driven-steel-design), which is a code hosting platform for 
version control and collaboration. The analysis methods are coded in Google Colab (short for 
Collaboratory) for ease of use. The open-source code of the MLP model used in this study will 
help the stakeholders with understanding the use of data analytics in structural engineering and 
adopt this modern technology. As all project data have been saved in the accessible repository, 
future researchers and users can update and modify the codes as needed by accessing the saved
version on GitHub.

6. Results
After developing the two data-driven models, the test set was utilized to assess the model perfor- 
mance. The predictive performance was evaluated by estimating the evaluation metrics including 
the coefficient of determination (R2) and root mean square error (RMSE), which can be calculated 
by Eq. 7 and Eq. 8, respectively:

R2 = 1−
∑m

1 (yi − ypi)
2∑m

1

(
yi − 1

m

∑m
1 yi

)2 (7)

RMSE =

√√√√ 1

m

m∑
m=1

(yi − ypi)2 (8)

where m is the total number of test data, yi is the test value, and ypi is the predicted capacity by the
prediction models. The R2 value represents how well the proposed function can predict the test set
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(a)               (b)

Figure 5: Performance comparison of the data-driven models developed based on the experimental data (a) Computa-
tion time (b) computation accuracy

data. The RMSE score quantifies how spread out the prediction errors are, i.e., how concentrated
the data is around the line of best fit.

Interpolation and MLP models were developed using a subset of data and tested based on the rest of
the data, as detailed in Section 5. Fig. 5a compares the computation time executed for developing
the data-driven models. Since the interpolation model requires the process of tessellating triangles
in the data, triangulation time is additionally shown. Interpolation has a considerable theoretical
foundation in one dimension (Cheney and Light 2009), and it is challenging to implement inter-
polation when the data size is large while maintaining tractable computational complexity (Lux et
al. 2021). Therefore, the time for the triangulation process largely increases as the training set size
increases. Although the MLP model demands a higher computational time than the interpolation
model with regards to model development, the interpolation model ultimately needs a larger to-
tal computational cost. This is because triangulation, which arranges the data for model training,
must occur prior to the interpolation model development. When 90% of data was used for model
development, the interpolation model demands 16 times the computation time for the MLP model.

Fig. 5b compares the train and test accuracy estimated based on the R2 score. The performance of
the training set is examined in the same method as for the test set in order to check the generaliza-
tion capacity of the models. This is a common approach when checking the prediction accuracy
of ML models. The data-driven models have a higher curve for the training set than the test set
because model testing is accomplished using unseen data. Comparing the test performances of the
models, the MLP model outperforms the other models with the highest accuracy of 0.995 when
80% of the data is used for training. The interpolation model shows the highest test accuracy only
when the training set is 10% of the data. However, the model of this case was developed based
on a small sample size, thus the model can be applied to a limited range of parameters. The case
of 0.1 is inappropriate to use as a final model because multiple sample sets in the test set can be
out of range. According to Fig. 5a and b, it is expected that the interpolation model could lead
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Figure 6: Comparison of the predicted and actual Nu of hollow section columns

to inefficient predictive performance due to its higher computation time and lower accuracy com- 
pared with the MLP model. As structural design problems often carry large data, the comparison 
of computation efficiency and accuracy poses the necessity of implementing enhanced data-driven 
approaches, i.e., machine learning methods.

Fig. 6 visualizes comparisons of the buckling capacity predicted by the developed models and 
the actual capacity measured by experiments or FE analyses in the test set. Different train-test 
splits that showed the best performance in Fig. 5b, 6:4 and 8:2 for the interpolation and MLP 
models, respectively, were adopted for each model. The coefficients of determination (R2) are 
provided separately to assess the performance of the experimental data and FE data. The R2 value 
equal to 1.0 represents the perfect prediction. Since the experimental data has a limited sample size 
compared with the FE data, it showed a lower performance. Comparing the performance of the two 
models, the MLP model produced a better performance by showing higher R2 scores, which are 
0.998 and 0.981 for the FE and experimental data, respectively. The interpolation model showed 
the lowest accuracy with scores of 0.959 and 0.892 for FE data and experimental data, respectively. 
Both models had higher accuracy for the FE data than the experimental data, and the performance 
of the combined data more closely resembles the R2 value for the FE data than the experimental 
data. The lowest accuracy occurred in the experimental data due to its relatively limited sample 
size in the training set and more inherent uncertainty in the input parameters of physical tests than 
for FE models. This indicates that the training data should include combined data to cover the 
entire range of parameters, which might be missing from experimental data only as experiments
are typically more limited than FE models but experiments are necessary to validate the FE models.

7. Discussion on the current design rules
This section assesses the proposed ML model by comparing the results to the US codified column 
buckling design code, AISC 360 (2016), which applies appropriate design equations based on 
the slenderness of elements and/or members, steel grade, and formation process. In addition, the 
Specification limits the applicability of the design rules to hollow sections with nominal yield 
strength only up to 485 MPa. However, the proposed ML method considers a wide range of yield
strengths and geometric properties as well as columns manufactured either by cold-forming or
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(a)                                   (b)

Figure 7: Comparisons of predictions by AISC 360 (2016) and the proposed machine learning model (a) high-strength
steel (b) normal-strength steel

hot-rolling, thereby providing a consistent method for estimating the buckling capacity of various
tubular section columns.

Fig. 7 compares the prediction-to-test capacity ratios (Nu,pred/Nu,test) derived by the proposed
MLP model developed on the train-test split of 8:2 and the current design provisions over the
range of the relative member slenderness ratio λc. In addition, RMSE for the combined data was
measured for the range of λc with increments of 0.3. The predicted capacity of the existing design
rules was estimated by using the equations that were previously introduced in Section 2. Fig. 7a
and b present the comparisons of the data split into two categories, high-strength steel (Fy ≥ 460
MPa) and normal-strength steel (Fy < 460 MPa). Both comparisons show that the existing design
rules led to a relatively large scatter band over the entire range of λc while the ML results derived
a better prediction with a narrow scatter band. The AISC design provision produces large errors
for a member in the relative slenderness range between 0.6 and 1.5, which represents the inelastic
buckling range where the effects of residual stresses and geometric imperfections are significant.
The RMSE plot for high-strength steel predictions again shows that the ML model produces the
best accuracy over the entire range of λc. It was observed that the AISC model produces more data
with lower values of (Nu,pred/Nu,test) for high-strength steel than for normal-strength steel. This is
because AISC 360 (2016) applies a single buckling curve which does not capture the influence of
the yield strength in the capacity estimation (Meng and Gardner 2020). The proposed ML model
demonstrates a high accuracy for both normal- and high-strength steel column predictions.

Fig. 8 compares the predictions generated by the current design provisions and the proposed ML
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(a)                           (b)

Figure 8: Comparisons of predictions by AISC 360 (2016) and the proposed machine learning model (a) hot-rolled 
steel (b) cold-formed steel

model by dividing the samples into two groups based on the formation techniques, which are hot- 
rolled and cold-formed. As shown in Fig. 8a for the hot-rolled steel predictions, the ML model 
presents better performance by providing a small variance and a low RMSE score than the AISC 
model. The AISC predictions for hot-rolled steel predominantly appear on the conservative side 
where Nu,pred/Nu,test ≤ 1.0 with a wide scatter band and thereby a larger error (RSME). For the
cold-formed steel results (Fig. 8b), however, a large number of the AISC predictions occurred in 
the unconservative zone, where the capacity ratio is greater than 1.0. This indicates that formation 
methods have a significant effect on the capacity if the physics-based model is used. It should be 
noted that AISC 360 (2016) does not reflect the different buckling capacities between formation 
techniques. The provided comparisons between the proposed ML model and the current design 
method in this section demonstrate the consistency and good performance of the proposed ML 
model for predicting both hot-rolled and cold-formed column capacities over the range of the 
relative slenderness ratio λc.

8. Conclusions
This paper presented data-driven models for buckling capacity prediction of square and rectan- 
gular hollow section (SHS and RHS) members under compression, which are manufactured by 
cold-forming or hot-rolling and composed of high-strength or normal-strength steel. Linear in- 
terpolation and multilayer perceptron (MLP) models were developed on a database of previously 
published 695 experimental results and 3,794 finite element (FE) analysis results of SHS and RHS 
columns. The columns in the database covered a wide range of material and geometric properties
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such as steel grades, cross-sectional dimensions, and member slenderness. Triangulation was per- 
formed to create meshes from the data for interpolation model development. The MLP model was 
optimized by performing feature scaling, hyperparameter tuning, and cross-validation. The two 
developed data-driven models were evaluated by computation time and accuracy. Finally, the best 
model was further verified by the comparisons with the existing design rules for columns provided 
in AISC 360-16. The significant findings of this research are summarized in the following:

• Computation time and accuracy of the two data-driven models demonstrated the advantages
of the machine learning model. As the conventional interpolation model needed time for cre- 
ating meshes from the discrete data, a large amount of time was executed for developing the 
interpolation model. Additionally, the accuracy estimated by the coefficient of determination
R2 was lower in the interpolation model compared with the machine learning model.

• The developed data-driven models were separately evaluated based on the data groups: (1)
experimental data only, (2) FE data only, and (3) combined data. For both the interpolation 
and MLP models, the performance on the FE data was the highest among the three data 
groups.

• The database and models are publicly available on the GitHub repository, https://github.c
om/HyeyoungKoh/Data-driven-steel-design. They are coded in a computational notebook 
format, which can be executed through the web browser without configuration and installa- 
tion of software on a local server. Future researchers can update and modify the codes and 
database as needed.

• The developed MLP model, which showed better performance than the interpolation model,
was further evaluated by comparing to the predictions obtained from the existing design 
rules in AISC 360-16 for SHS and RHS columns. The ratios of predicted-to-tested capacity 
derived from AISC 360 and the proposed MLP model were compared. The comparisons 
were separately implemented on (1) normal- and high-strength steel columns and (2) hot- 
rolled and cold-formed columns. The MLP model demonstrated a consistent performance, 
which provided the capacity ratio close to 1.0 with a small variance, over the entire range 
of the member slenderness ratio and across different steel grades and forming techniques, 
whereas the existing design methods showed inconsistent performance with relatively large 
root mean squared errors and variance.

The consistency and high performance of the proposed ML model indicates that machine learning 
based design can be a viable method for the accurate prediction of SHS and RHS column capac- 
ity. This could augment design provisions which may not directly reflect the importance of all
properties such as high-strength steel or specific manufacturing process.
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